
www.manaraa.com

                

Abstract 
 

HEHR, BRIAN DOUGLAS.  High Temperature Graphite Simulations using Molecular 
Dynamics.  (Under the direction of Ayman I. Hawari).   
 
 
 Graphite, a major structural and moderator material in the proposed Generation IV 

reactor roadmap, is expected to experience irradiation at temperatures up to 1800 K.  In this 

study, molecular dynamics (MD) is employed to investigate the physical properties of 

graphite from 0 K to 1800 K.  MD applies the classical laws of physics to simulate atomistic-

level behavior, and from the observed microscopic data, macroscopic properties may be 

surmised.   

 For the purposes of this study, a graphite-specific MD code was created and 

benchmarked against high temperature graphite data.  Modifications were introduced into the 

interatomic potential function as needed to fit experimental measurements.  Graphite-specific 

modifications include a plane-by-plane center of mass velocity correction, an additional 

potential energy cutoff function for out-of-plane displacements, and temperature-dependent 

parameterization of the potential function.  These adjustments were fitted to high temperature 

measurements of thermal expansion and mean squared displacement.        

 The refined MD model of graphite was subsequently utilized to examine the threshold 

displacement energy at temperatures ranging from 300 K to 1800 K.  It was found that the 

threshold energy depends strongly on the knock-on direction, as is expected due to the highly 

anisotropic nature of graphite.  MD calculations of the threshold energy exhibited good 

agreement with the results of two electron irradiation studies.
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Chapter 1  

Introduction 
 

1.1   Introduction 
 

 Graphite – in one form or another – has been a significant nuclear material ever since 

the inception of controlled fission in the 1930’s and 40’s.  In fact, the world’s first functional 

nuclear reactor (referred to as Chicago Pile-1) contained piles of graphite blocks that slowed 

neutrons down to the thermal energy range.  Graphite-moderated reactors have subsequently 

been constructed in several nations for research or power generation purposes. 

 While light water reactors (LWRs) presently dominate the realm of commercial 

nuclear power production, graphite remains one of the foremost candidate materials for use 

in the proposed Generation IV reactor designs.  Its attractiveness lies in an almost unique 

combination of desirable properties, including: 

• High mechanical strength 

• Large heat capacity 

• Very high melting temperature 

• Small cross section for neutron absorption 

• Relatively low density 

 

Despite the increasingly important role of graphite, its response to a high-temperature, 

irradiated environment has yet to be comprehensively investigated.  To fill this need, the 

present work was undertaken with the purpose of developing a molecular dynamics code 

capable of simulating the physical behavior of graphite at high temperatures.  This capability, 
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in conjunction with experimental studies, provides an excellent array of tools for examining 

the behavior of graphite in a Generation IV type environment.         

 

1.2   Generation IV Concept and the VHTR 
 

 The Generation IV initiative is a global partnership that aims to deploy a new 

generation of safe, economical, sustainable, and reliable reactors for the purpose of 

commercial energy generation.  Presently, the vast majority of commercial reactors are water 

cooled and moderated, with power production taking place in a network of UO2 fuel 

assemblies.  While these light water reactors (LWRs) have an excellent operating record, 

new advances have led to the conceptualization and initial design of several innovative 

reactor concepts, among which the Very High Temperature Reactor (VHTR) has figured 

prominently.        

 Like the LWR, the VHTR is envisioned as a thermal spectrum reactor in which low 

enriched uranium (LEU) comprises the primary fuel.  The VHTR, however, would operate at 

a temperature of approximately 1000°C – much higher than the standard outlet temperature 

of an LWR.  Furthermore, the VHTR is graphite moderated and helium cooled, leading to 

vastly different design considerations on the primary side of the system.  A diagram of the 

proposed VHTR system is shown in Fig. 1-1.  One effect of the higher operating temperature 

is to increase the efficiency of energy conversion; whereas most LWRs possess a conversion 

efficiency of well under 40%, the VHTR is predicted to achieve greater than 50% efficiency.  

An additional effect of the high outlet temperature – one that is, at present, unique to the 
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VHTR – is the potential coupling of the reactor system to an external thermochemical 

process for producing hydrogen gas, steel, or aluminum.   

 

 

Fig. 1-1.  Schematic of the proposed VHTR system including a coupled hydrogen production facility [1]. 
 

 A number of factors lie behind the choice of graphite as the preferred moderator for 

the VHTR.  First, in terms of the moderating figure of merit (FOM): 

 
a

sFOM
Σ
Σ

=
ξ

                                                                                                            (1.1)   

graphite’s FOM of 192 compares quite favorably against the FOM of 71 for light water.  

Here, sΣ  and aΣ  are the macroscopic scattering and absorption cross sections respectively 

and ξ  is the average lethargy gain per collision.  The superiority of graphite in this respect is 

mainly due to its relatively small absorption cross section for thermal neutrons.  Being a solid 
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state moderator, graphite further performs the function of a structural material.  This is made 

possible by its exceptionally high melting temperature of approximately 3700°C.  

 The static residence of graphite in the reactor core implies that radiation-induced 

defects will accumulate over time and may exert a significant impact of the properties of the 

moderator.  In view of this fact, the present work focuses on the development of a high 

temperature molecular dynamics code for graphite and its application in performing an initial 

evaluation of defect formation at various temperatures between 300 K and 1800 K (up to the 

accident temperature of the VHTR).      

 

1.3 Relevance to Thermal Neutron Scattering 
 
 
   In addition to the impact of neutron irradiation on the mechanical and physical 

properties of graphite, which is well documented in literature [2], there are reasons to believe 

that neutronic properties also can be affected.  Because the introduction of vacancies and 

interstitials into the lattice structure perturbs the phonon frequency spectrum, the presence of 

these defects can impact neutron interactions in the thermal energy range – where phonon 

creation and annihilation processes contribute sizably to the scattering cross section [3].  The 

resulting change in the thermal neutron energy spectrum has implications in safety and 

criticality assessment of nuclear reactors.   

   As it turns out, the atomic trajectory data obtainable from a molecular dynamics 

simulation can straightforwardly be converted into the thermal scattering law, which is the 

fundamental input for calculating the differential scattering cross section of a material.  

Expressly, the differential scattering cross section may be written as [4]: 
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 ( ) ( )( )wQSwQS
k
k

dEd
d

sincohcok ,,'
4
12 rv

σσ
π

σ
+=

Ω
                                                            (1.2) 

where k and k’ represent the magnitude of the wave vector of the incident and scattered 

neutron respectively, cohσ  is the bound atom coherent scattering cross section, incohσ  is the 

bound atom incoherent scattering cross section, and ( )wQS ,
v

 is the scattering law in which 

'kkQ
rrr

−= .  The scattering law may be decomposed into two terms: 

 ( ) ( ) ( )wQSwQSwQS ds ,,,
rrr

+=                                                                                    (1.3) 

where Ss is the self scattering law and Sd is the distinct scattering law.  Of these two 

functions, the self scattering law is typically much simpler to calculate.  Thus, the primary 

challenge lies in determining the distinct component or, alternatively, the total scattering law, 

from which Sd can be extracted via Eq. (1.3).  Using the Van Hove formulation, the total 

scattering law may be written as: 

 ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

−⋅= dtrdetrG
h

wQS wtrQi rrr rr

,
2
1,
π

                                                                       (1.4) 

in which ( )trG ,r  is the probability of finding the atom at position rr at time t.  Since the atomic 

positions are known exactly throughout the time evolution of an MD system, ( )trG ,r  is 

directly calculable in MD and the scattering law may be computed by taking the Fourier 

transform of ( )trG ,r as in Eq. (1.4).  This approach applies to both damaged and undamaged 

systems.     

1.4    Structure of Graphite 
 

Fig. 1-2 illustrates the structure of graphite – a semi-metallic allotrope of carbon.  

Graphite features hexagonal ABAB stacking with an interplanar gap that is sufficiently large 
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to permit only Van der Waals interactions between atoms occupying different planes.  Very 

strong covalent bonds exist within each plane, and the exceptionally large cohesive energy of 

7.37 eV is primarily responsible for the high melting temperature of graphite.  Conductivity 

is also dependent on crystallographic direction, with a high in-plane conductivity arising 

from the presence of de-localized electrons.  These electrons are further responsible for 

graphite’s dull, metallic appearance, shown in Fig. 1-3.   

The layered atomic arrangement inherent in graphite also produces strong anisotropy 

in properties such as thermal expansion.  For this reason, nuclear-grade graphite is usually 

fabricated with randomly orientated grains such that the randomness of the aggregate 

effectively averages out the anisotropic behavior of the pyrolytic variety, generating an 

isotropy that is conducive to core stability.  Nuclear graphite must also be free of neutron 

absorbing impurities, particularly boron.         

 

 

          Fig. 1-2   The crystal structure of perfect graphite, with the unit cell demarcated in bold lines.  Also 
shown are the characteristic lattice parameters at 0 K.        
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                                                   Fig. 1-3   Sheets of pyrolytic graphite 
                                            

                   

1.5   Computational Techniques 
 
 

Lattice dynamics and molecular dynamics (MD) are the main techniques for 

simulating material behavior on the atomistic level.  These two methods differ in that lattice 

dynamics typically consigns atoms to discrete lattice points, whereas no such restriction is 

enforced within a molecular dynamics simulation.  In either case, interatomic interactions 

may be evaluated using either an empirical or an ab-initio (“first principles”) potential energy 

function.  The latter refers to a simplified quantum mechanical structure calculation while the 

former involves fitting a user-defined potential function to material properties.  However, the 

empirical approach is not completely detached from quantum mechanics, because the chosen 

forms of the empirical formulae are often based on quantum mechanical models. 

While the empirical approach clearly limits the transferability of the derived potential 

function, it typically allows for much greater computational efficiency, thereby placing less 

severe restrictions on the size and/or time scale of the simulated system.  Because this work 

encompasses damaged structures as well as high temperature dynamics on the picosecond 
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scale, the empirical molecular dynamics technique was selected as the appropriate 

methodology.  The remainder of this discussion shall therefore focus on empirical MD.                 

 

1.6 History of MD 
 

While the first MD simulations of realistic systems emerged as recently as the 1960’s 

and 70’s, the foundational concepts of MD stretch far back into antiquity [5].  In fact, much 

of modern physics – most conspicuously, quantum theory – is left unaddressed in the realm 

of MD, in which Newton’s equations of motion form the primary theoretical underpinning.  

By treating atoms as point masses, MD bypasses a direct handling of the electronic 

interactions that place such a high computational cost on ab initio calculations.  The price of 

these simplifications takes the form of two fundamental approximations:           

 

1. That the modeled system may be accurately represented using only the classical laws 

of physics (with the possible inclusion of semiclassical corrections) 

2. That interatomic interaction may be reduced to a potential energy function comprised 

of two- and/or three-body terms.   

 

Despite the seeming restrictiveness of the above approximations, MD has proven 

remarkably useful for computational investigations of a wide range of substances in the 

liquid, solid, and gaseous phases.  From early studies of the phase diagram of argon to recent, 

large-scale studies of highly complex systems such as the complete satellite tobacco mosaic 

virus, MD has met with considerable success in diverse endeavors.   
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Chapter 2 

Basics of Molecular Dynamics 
 

2.1   Introduction 
 

Molecular dynamics (MD) is a simulation technique in which an interacting atomic 

system is allowed to evolve for a specified period of time under the laws of classical physics.  

MD derives its simplicity and relatively low computational cost from the assumption that 

atomic trajectories may be evaluated via Newton’s 2nd law, which can be written as follows: 

2

2

dt
rd

mVF i
iri i

vv
=−∇=                                                                                                   (2.1)                         

where V is the potential energy of the system, ir
v  is the position vector of atom i, mi is the 

mass of atom i, and t is time.  In practice, MD simulations must progress in accordance with 

a finite time step, and so the standard methodology is to implement Eq. (2.1) using finite 

difference techniques.                                                

   

2.2     Finite Difference Method 
 
 

The finite difference scheme employed to solve Eq. (2.1) is the heart of any MD 

simulation, and in order to function well, the truncation error of the chosen scheme must be 

low enough to allow for a sufficiently large time step.  Otherwise, more steps will be needed 

to simulate a given length of time.  The computational efficiency of the algorithm should also 

be as high as possible, but truncation error is usually the foremost issue.  This is because the 

force calculation is almost always the most costly part of an MD program, and the number of 

force calculations is directly proportional to the number of time steps.     
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Several methods of finite difference evaluation are in common usage (e.g. the 

leapfrog, Verlet, and predictor-corrector methods).  Each of these algorithms begins with a 

Taylor expansion about the atomic positions [6]: 

( ) ( ) ( ) [ ] ( ) [ ] ( ) [ ] ...
6
1

2
1 3

3

3
2

2

2

+∆+∆+∆+=∆+ t
dt

trdt
dt

trdt
dt

trdtrttr
vvv

vv                              (2.2) 

               ( ) ( )[ ] ( )[ ] ( )[ ] ...
6
1

2
1 32 +∆+∆+∆+= ttbttattvtr

vvvv                                           (2.3) 

Similarly, 

( ) ( ) ( )[ ] ( )[ ] ...
2
1 2 +∆+∆+=∆+ ttbttatvttv
vvvv                                                                (2.4) 

( ) ( ) ( )[ ] ...+∆+=∆+ ttbtatta
vvv                                                                                    (2.5) 

where vv  is velocity, av  is acceleration, and b
v

 is impulse.  The remainder of this discussion 

will focus on the predictor-corrector method, which was implemented in the NCSU MD code 

for graphite. 

 

2.3   Predictor-Corrector          
 
 

From Eqs. (2.2) - (2.5), the particle positions and associated derivatives at time (t+∆t) 

may be estimated from quantities available at time (t).  These estimations correspond to the 

“predictor” step of the algorithm.   The predicted positions and accelerations shall be labeled 

( )ttr p ∆+v  and ( )tta p ∆+v  respectively, and similar notation is used for other derivatives of 

position.  In matrix format, the predicted quantities are given by: 
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( )
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v

                                                                        (2.6) 

where  ( )trr vv =0 , ( )[ ]t
dt

trdr ∆=
v

v
1 , ( )[ ]22

2

2 2
1 t

dt
trdr ∆=

v
v , and ( )[ ]33

3

3 6
1 t

dt
trdr ∆=

v
v  correspond to the 

components of the Taylor expansion as shown on the RHS of Eq. (2.2).             

After incrementing the particle positions in accordance with the predictor equations, 

the true accelerations are obtainable at { ( )ttr p ∆+v } via direct calculation of interatomic 

forces.  The difference between the predicted and true accelerations constitutes an error 

signal of the form: 

( ) ( ) ( )ttattatta pt ∆+−∆+=∆+∆ vvv                                                                           (2.7) 

and the final, corrected trajectories are then given by: 

 

( )
( )
( )
( )

( )
( )
( )
( )

( )tta

c
c
c
c

ttb
tta
ttv
ttr

ttb
tta
ttv
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p
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p
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c

c

c

c

∆+∆
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⎜
⎜
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⎝
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∆+
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=
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⎟
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⎜
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v

v
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1

0

                                                           (2.8) 

Gear [7] has prescribed values for the coefficients { }c  that optimize the stability and accuracy 

of the predictor-corrector scheme.  The optimized coefficients for a 2nd order differential 

equation of the form ( )rf
dt

rd
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2

2

 are tabulated in Table 2.1.  In the NCSU MD code, the 

Taylor expansion of Eq. (2.2) is truncated after the fourth term, and so the appropriate Gear 

coefficients correspond to the second line of Table 2.1.       
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                                 Table 2.1.  Gear coefficients for a 2nd order equation [6] 
# expansion 

terms c0 c1 c2 c3 c4 c5 
3 0 1 1       
4 1/6 5/6 1 1/3   
5 19/120 3/4 1 1/2 1/12  
6 3/20 251/360 1 11/18 1/6 1/60 

 

2.4      Periodic Boundary Conditions 
 
 

The simulated atomic structure is customarily constructed by combining an integer 

number of crystallographic unit cells into a larger entity called the “supercell”.  Depending 

on the purpose of the simulation as well as the lattice type of the material, the user may find 

it desirable to create a non-uniform supercell that is skewed along a particular Cartesian axis.  

Yet, regardless of how the supercell is defined, a question arises regarding how to treat the 

boundary atoms if surface effects are not desired in the calculation.       

One could simply construct a supercell of sufficient size to render surface effects 

negligible around the center of the cell.  However, this approach is highly inefficient when 

compared to the technique of periodic boundary conditions (PBC). 

The basic idea of PBC is to surround the supercell with identical images of itself such 

that atoms in the vicinity of the supercell border will “see” virtual atoms rather than empty 

space.  Although these virtual atoms participate in interatomic force calculations, they are not 

moved independently via Newton’s 2nd law nor are they included in system-wide averages.  

At all times, they merely mirror the movements of their supercell counterparts.  Imposing 

PBC on a 3D supercell will bring about 26 images such that every face, edge, and corner of 

the supercell boundary is completely surrounded by the simulated crystal structure.  The 

concept of PBC is illustrated in  Fig. 2-1.                 
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               Fig. 2-1.  Periodic Boundary Conditions.  Cells A-H are images of the supercell.  The interatomic 
interaction range must be less than the width of the supercell in order to prevent interaction 
between an atom and one of its images.   [8]      

                               
 

An additional effect of PBC – shown in Fig. 2-2 – is that an atom exiting the supercell 

volume will instantly re-enter the supercell at another position.  In other words, the exiting 

particle is replaced by one of its images so that the total number of atoms within the supercell 

is preserved.             

 

 

       

 

 

 
          Fig. 2-2.  Transport phenomenon under PBC.  The particle exits from the upper-righthand corner 

and its image enters from the lower-righthand corner.   
 
 
 
 

Supercell 
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2.5 Ensembles 
 

The concept of particle ensembles originates in statistical mechanics and is vital for 

attaining a theoretical understanding of the equilibrium state of an atomistic system.  

Fundamentally, ensemble theory endeavors to establish a connection between the 

microscopic traits of the system and macroscopically observable thermodynamic quantities.  

The word “ensemble” refers to the aggregate of possible configurations of a system that 

satisfy a given set of macroscopic constraints.  Ensembles are commonly identified by these 

constraints; for example, the NVT ensemble is associated with a constant particle number, 

volume, and temperature.             

In computational MD simulations, microscopic characteristics of the system (i.e. the 

positions, momenta, and particle interaction rules) are explicitly calculated or specified by 

the user, and quantities of interest (such as macroscopic observables) are generally computed 

as averages over the available microscopic data.  Thus, the details of ensemble theory are not 

required to perform, or extract results from, a computational MD simulation.  Indeed, 

ensemble theory deals only with the configurations of the system in position-momentum 

space and does not address its time evolution.  The equivalence of time averaging and 

ensemble averaging is established by the Ergodic hypothesis, which, along with ensemble 

theory, is given a more detailed treatment in Appendix A.                            

 

2.6 Initial Velocities 
 

The initial velocity components of each atom along the x, y, and z axes are typically 

determined through a random number generation scheme.  Two physically important 

conditions should be enforced in setting the initial velocities: 
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               0=== zyx mvmvmv                                                                                   (2.9) 

               
m
Tkvvv B

zyx === 222                                                                                     (2.10) 

where vx, vy, and vz are the x, y, and z components of velocity, m is the atomic mass, and kB 

is Boltzmann’s constant.  Eq. (2.9) relates to the symmetric distribution of momenta about 

0=pv  while Eq. (2.10) pertains to the equipartitioning of energy.  The significance and 

implementation of Eq. (2.9) is discussed in the following section.      

According to the equipartition theorem, an average energy of kT
2
1  is associated with 

every independent degree of freedom of a molecule in thermal equilibrium.  This provision is 

imposed in MD by scaling the initial random velocities by a uniform constant such that Eq. 

(2.10) is satisfied.  Eqs. (2.9) and (2.10) together define an initial condition that facilitates 

meaningful investigation of the physical properties of the system.             

2.7 Center of Mass Correction 
 

As mentioned in the previous section, initialization of an MD simulation typically 

involves some degree of randomization in the initial velocities of the particles.  In almost all 

cases, the center of mass velocity of the system will assume a small but nonzero value.  This 

scenario is undesirable in standard MD simulations because the kinetic energy will 

consequently be shared between internal energy and bulk translational motion, causing 

difficulty to arise in correlating physical properties with temperature.  To address this issue, 

most MD codes include a center of mass (CM) correction routine that first calculates the CM 

velocity via: 
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                                                                                                        (2.11) 

and then scales the CM velocity to zero: 

cmjj vvv vvv −→             for all atoms j                                                                      (2.12)                         

Eq. (2.12) functions effectively when applied to isotropic materials; however, in the case of 

graphite, the weakness of the interplanar forces necessitates consideration of each plane as a 

distinct subsystem to which Eqs. (2.11) and (2.12) are applied on a plane-by-plane basis.       

 

2.8   Velocity Rescaling  
 
 

Temperature drifts arise naturally during the course of an MD simulation; this is 

because interatomic interactions follow Newton’s 2nd law, which only guarantees 

conservation of total energy (i.e. the sum of kinetic and potential energy).  Therefore, in 

generating a constant temperature ensemble, an additional algorithm is often needed to 

regulate the average kinetic energy from one time step to the next.  The simplest method, 

velocity rescaling, is described below.  Other possibilities are mentioned in Appendix A.                  

Classically, temperature can be related to kinetic energy via: 

2

2
1

2
3 mvKETkB ==                                                                                        (2.13) 

where KE is kinetic energy.  Manipulating this equation yields an expression for temperature: 

Bk

mv
T

3

2

=                                                                                                               (2.14) 
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which is easily calculable given the momenta of the particles.  In general, the temperature 

computed using Eq. (2.14) will fluctuate during the course of an MD simulation.  The 

simplest way to restore the desired temperature is to introduce a velocity scaling factor of the 

form: 

actual

o

T
T

F =                                                                                                            (2.15) 

where To is the desired temperature and Tactual is the temperature calculated from Eq. (2.14).  

This factor is applied to all particle velocities: 

jj Fvv →          for all atoms j                                                                                (2.16)  

 resulting in the correct average over kinetic energy.           

 

2.9   Potential Energy Function 
 

While many of the MD techniques so far discussed may be applied to a wide variety 

of systems, the potential energy function is highly material-dependent.  This is partly due to 

the empirical nature of MD potentials.  Instead of utilizing the more universal principles of 

quantum mechanics, empirical potentials treat the atoms as point masses that interact in a 

manner describable by relatively simple functions of the atomic positions.  The point mass 

approximation is normally justified at temperatures above the Debye temperature of the 

material.                

In general, the energy of a system of interacting particles may be written [9]: 

( ) ( ) ( ) ...,,, 321 +++= ∑∑ ∑∑∑∑
< <<< i ji

kji
kjii ji

ji
i

i rrrVrrVrVU vvvvvv                                     (2.17) 
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where the potential function, U ,  is labeled an “ m -body” potential when the RHS is 

expanded up to mV .  The reactive bond order (REBO) potential, which applies Eq. (2.17) to 

hydrocarbons specifically, will be examined in detail.  First, the origin of the REBO potential 

will be elucidated through discussion of the Abell formalism – a precursor to the class of 

bond order potentials of which REBO is a member.    

 

2.9.1 Abell Formalism 
 
The formalism introduced by Abell [10] was foundational to the subsequent bond 

order schemes refined by Tersoff [9] and Brenner [11].  Starting from the quantum 

mechanical equations that describe molecular binding, Abell demonstrated that the 

interatomic binding energy could be expressed as: 

 ( )∑ +=
k

AkkRkk VpqVZE                                                                                        (2.18) 

where E is the binding energy per atom, Zk is the number of atoms in the kth-neighbor 

coordination shell, kp  is the bond order term, q  is the number of valence electrons per atom, 

and AkV  and RkV  are functions describing interatomic attraction and repulsion respectively.  

In all cases, the k subscript refers to the kth coordination shell relative to some reference atom.  

It should be emphasized that the summation of Eq. (2.18) is not restricted to nearest 

neighbors of the reference atom and, in principle, includes all atoms of the system.      

 

Nearest Neighbor Approximation   

           To validate the simplification of Eq. (2.18) to include only nearest neighbors, Abell 

states the following arguments: 
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1. The repulsive term, VRk – which includes the Pauli overlap repulsion and 

electrostatic repulsion – falls off much more rapidly than VAk and may be cut off 

beyond the first coordinate shell.   

2. To a very good approximation,  

                       ∑ ≅
k

kkk ZppZ υ                                                                                   

   where 
1A

Ak
k V

V
=υ  is the ratio of the attractive term of the kth shell to that of the 1st        

   shell.   

3. Even when VAk decays slowly with distance, the effect of interactions beyond the 

first shell may be treated as a small perturbation. 

 

 The third argument is posited without elaboration and is effectively an assumption.  

Abell adopts the second argument as the primary justification for the nearest neighbor 

approximation.  Overall, it is evident that this approximation lacks rigorous reinforcement 

and certainly does not hold for all materials (particularly simple metals).  Indeed, validation 

of the nearest neighbor approximation is chiefly a posteriori in that numerous studies have 

since demonstrated its capacity to agree with the observed properties of a wide range of 

materials.                     

    

Attractive and Repulsive Terms  

Under the nearest neighbor approximation, Eq. (2.18) becomes: 

( ) ( )[ ]rpVrqVZE AR +=                                                                                          (2.19) 
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where r is the interatomic distance.  To make this formula more explicit, functional forms for 

VR and VA must be specified.  Abell selects the following representations: 

 ( )rAVR Θ−= exp                                                                                                    (2.20) 

( )rBVA λ−−= exp                                                                                                   (2.21) 

in which A,B, Θ , and λ  are positive definite quantities characteristic of the given atomic 

species.  Considerable support exists for the exponential form, namely that: 

 

1. Atomic orbitals decay exponentially with r 

2. Diatomic potentials have often been represented exponentially, as have pair 

interactions in transition metals and semiconductors. 

3. Ab initio calculations of hydrogen and lithium show a nearly exponential decay 

with r.  

 

Bond Order  

With the form of VA and VR defined explicitly, the principal remaining task is to 

represent the bond order, p , in terms of physical quantities.  Abell shows that, for a Bethe 

lattice, the bond order may be expressed as: 

 ( ) ( )∫
∞−

−=
F

dZn
Z

qZp
ε

ββ εεε ,1,                                                                                 (2.22) 

where ε  is energy, Fε  is the Fermi level, and βn , the density of states per site for a Bethe 

lattice, is given by: 

 ( ) [ ]( ) [ ]( )
( )22

2
2 14

14,
ε

ε
εθεπ β −

−−
⋅−−=

Z
ZZ

ZZn                                              (2.23)     
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in which θ  denotes the unit step function.  Applying a large-Z expansion to the density of 

states allows for Eq. (2.22) to be evaluated analytically, and the first-order result is: 

 ( ) ( )
Z

qqZp 1, αβ ≅                                                                                                (2.24) 

which indicates that the bond order is inversely proportional to the square root of the 

coordination number.                             

 
 

2.9.2 Reactive Bond Order Potential (REBO) 
 

Elaborating upon the basic ideas expounded by Abell and Tersoff, Brenner [11] 

created a similar potential aimed at modeling hydrocarbons.  In addition to re-parameterizing 

the Tersoff formulation, this 1st generation REBO potential augmented the bond order term 

with an explicit function of coordination number.   

Publication of the 2nd generation REBO potential [12] marked the latest landmark in 

this family of potentials.  While retaining the basic equation for binding energy used by Abell 

and Tersoff, Brenner and coworkers increased the sophistication of the pairwise attractive 

and repulsive functions in order to simultaneously fit the bond lengths, cohesive energies, 

and force constants of several  carbon-carbon and carbon-hydrogen structures.  Moreover, the 

size of the fitting library was expanded, and a torsional term was added to the bond order.   

The 2nd generation REBO potential will now be discussed in detail.  The total binding 

energy is given by:     

( ) ( ) ( )[ ]∑∑
>

+=
i ij

ijAijijRijC rVbrVrfE                                                                  (2.25) 
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where VR and VA are pairwise repulsive and attractive functions, ijb  is the bond order term, 

ijr  is the distance between atoms i and j, and ( )ijC rf  is a cutoff function that smoothly tapers 

the potential energy to zero starting at some specified distance beyond the 1st coordination 

shell.   

 

Cutoff Function 

The cutoff function, which enforces the nearest-neighbor approximation proposed by 

Abell, is written as:  

( )
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rf

,0

,cos1
2
1

,1

)( π                                  (2.26) 

in which Rin and Rout (i.e. the inner and outer cutoffs) are the interatomic distances at which 

the sinusoidal cutoff begins and ends.  In REBO, Rin and Rout are set to 1.7 Å and 2.0 Å 

respectively.  This is acceptable for graphite, in which the 1st neighbor distance of 1.42 Å 

falls well within the inner cutoff range and the 2nd neighbor distance of 2.46 Å is well beyond 

the outer cutoff limit, meaning that the potential energy calculation is indeed restricted to 

nearest neighbors. 

 

Attractive and Repulsive Functions 

 The pairwise repulsive and attractive functions are given as follows: 

( )ij
ij

R rA
r
QV α−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= exp1                                                                                      (2.27) 
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( )∑
=

−=
3,1

exp
n

ijnn
A rBV β                                                                                          (2.28) 

where A, Q, α , nB , and nβ  are fitting constants.  The ( )ijrQ / term prevents atoms from 

approaching each other too closely during energetic collisions.  The rationale behind the 

exponential dependence on ijr  was discussed in section 2.9.1.        

 

Bond Order 

 The bond order term consists of four distinct components: 

[ ] DH
ij

RC
ijjiijij bbbb +Π++= −− πσπσ

2
1                                                                           (2.29) 

in which πσ −
ijb  depends on local coordination and bond angle as follows:  

( )
( )

( )
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⎤
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+⋅+= ∑ H
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iij

jik
cik

c
ikij NNPegrfb ijkλπσ                                                  (2.30) 

where gc is a function of the angle between the i-j and i-k bond.  For graphite, λijk and Pij are 

zero.  The term C
iN  refers to the number of carbon atoms surrounding atom i (excluding the 

i-j bond) and can be expressed in terms of the cutoff function via:     

( )
( )
∑
≠

=
jik

ik
c

ik
c
i rfN

,
                                                                                                    (2.31) 

which allows for fractional values if outikin RrR << .  It can be demonstrated that πσ −
ijb  

approaches the bond order expression derived by Abell (Eq. (2.24)) under the same large-Z 

approximation.  To see this, Eq. (2.30) may be written (for graphite) as: 

( )
( )

5.0

,

1
−

≠

−
⎥
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⎤
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⎡
⋅+= ∑

jik
cik

c
ikij grfb πσ                                                                                (2.32) 

And because: 
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it is apparent that, for a large number of neighbors, the following holds: 
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which is exactly the proportionality derived by Abell.   

 

Bond Angle Term 

The angular function gc is given by:     

( ) ( ) ( ) ( )[ ]ijkcijkc
t
iijkcc GNQGg θθγθ coscoscos −+=                                                (2.35) 

where ( )ijkcG θcos  and ( )ijkc θγ cos  are 5th degree polynomial splines and ijkθ is the angle 

between the i-j and i-k bond.  The function ( )t
iNQ  discriminates between low and high 

coordination structures and is defined as:                
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where C

i
H
i

t
i NNN +=  is the total number of carbon and hydrogen atoms surrounding atom i.  

In the case of graphite, clearly t
iN  = C

iN .    

 

Conjugation Term 

The function ijΠ , representing the impact of radical energetics and pi-bond 

conjugation, takes the form of a tricubic spline: 
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in which a set of 64 constants lmna  is fitted to each permutation of ( )conj

ij
t
j

t
i NNN ,,  subject to 

the following rules: 
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with conj
ijN  defined by:  
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where ( )ikxF  is given by: 

( ) { }[ ]{ }

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

<<−+

<

=

3,0

32,2cos1
2
1

2,1

ik

ikik

ik

ik

x

xx

x

xF π                                           (2.42) 

 
in which: 

 
( )ik

c
ik

t
kik rfNx −=                                                                                                   (2.43) 

 
Within a perfect graphite system, ( ) ( )9,2,2,, =conj

ij
t
j

t
i NNN  for every i-j pair. 

 
 
Torsional Term 

Torsional effects are quantified through the expression:                
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where the dihedral angle, ijklΘ ,  is calculated from jikê  and  ijlê  -- unit vectors in the 

direction of ( )ikji rr rr
×  and  ( )jlij rr rr

×  respectively --  as:                                     

( ) ( )ijljikijkl ee ˆˆcos •=Θ                                                                                              (2.45) 

and Tij is a tricubic spline possessing the same form as Eq. (2.37) above but with a different 

set of fitted coefficients.         

For graphite, application of the REBO potential at 0 K produces the potential energy 

curve shown in Fig. 2-3.         

 

Fig. 2-3.  The potential energy of graphite at 0 K vs. the in-plane lattice parameter, as computed using the 
REBO potential.   At a lattice parameter of 2.94 Å, the 1st neighbor separation enters the cutoff range, 
causing a sudden increase in the potential energy gradient.                                       
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Chapter 3 

Motivation for a New Model 
 

3.1 Graphite Structure 
 
 

While the REBO potential provides a fairly comprehensive treatment of short-range 

interactions, no attention is given to the long range forces that are vital to the stability of the 

graphite structure.  The need for an additional component of the potential is illustrated in Fig. 

3-1.  These snapshots of the simulated atomic positions reveal that an entire plane of atoms 

may exhibit membrane-like vibrations unless a force is present to resist out-of-plane motion.  

The unnaturally large vibrations evident in Fig. 3-1 are also manifest in the out-of-plane 

mean squared displacement, displayed in Fig. 3-2.         

 

Fig. 3-1   The profile of a simulated array of graphite using the REBO potential with fixed boundary 
atoms.   The atomic planes oscillate in an unphysical manner in the absence of long range forces.    
 
 

Various researchers have introduced modified forms of REBO (e.g. the AIREBO 

potential [13]) that incorporate long range Van der Waals interactions.  These efforts 

typically involve the addition of a Lennard-Jones type potential to the standard REBO 

formulation.   
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Fig. 3-2.   The out-of-plane MSD at 1200 K as computed using the published form of REBO.  The 
calculated MSD approaches equilibrium an order of magnitude above the band of MSD values reported 
in literature.       
 

However, the explicit inclusion of long range interactions is computationally intensive, since 

the number of interacting pairs increases many fold.  The approach taken in this work is to 

approximate long-range interactions using a function dependent only upon an atom’s out-of-

plane displacement relative to the interplanar spacing of the system (which, in turn, varies 

with temperature).  This function is parameterized so as to fit experimental mean-squared 

displacement (MSD) data along the hexagonal c-axis. 

3.2    Absolute Zero Fitting 
 
 

Additional complications arise at high temperatures due to the manner in which the 

REBO potential is parameterized.  As with the majority of empirical potential functions, 
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REBO employs a fitting database consisting only of absolute zero properties such as bond 

length, force constant, and atomization energy.  Consequently, the fitted REBO constants are 

strictly suitable only at 0 K.   

Combined with the general-purpose intent of REBO, this fact suggests that high 

temperature MD calculations will likely depart from experimental measurements.  Indeed, 

such a discrepancy was found to exist in the thermal expansion coefficient.  Fig. 3-3 

illustrates the difference between MD and experiment.  To improve the performance of 

REBO at high temperatures, a temperature-dependent adjustment factor is introduced in the 

present work.                       

 
Fig. 3-3   MD calculation of thermal expansion using the published form of the REBO potential 
(diamonds).  MD calculations are compared to a shaded region representing the total range of data 
reported by Billings [19], Steward [20], and Bailey/Yates/Morgan [21].  
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Chapter 4 

Description of the NCSU MD Model  
 

4.1 Introduction 
 

The final NCSU MD model will now be discussed in detail.  A number of non-

standard features have been included that specifically address the graphite structure.  Unless 

otherwise noted, all simulations were performed in the NVT ensemble using periodic 

boundary conditions, at a time step of 0.5 femtoseconds.  The flowchart given in Fig. 4-1 

illustrates the basic functioning of the NCSU MD code, which is designed to run on parallel 

processors.  Details of the parallelization are discussed in Appendix B.              

 

 

 

                                                 Fig. 4-1  Flowchart of the NCSU MD code 
                           

Initialization 
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4.2 Thermal Bath 
 

 NVT conditions were imposed through a two-step process: 

(i) Rescaling of all atomic velocities for several hundred time steps 

(ii) Velocity rescaling only within a delimited thermal bath region (along the 

periphery of the supercell) for the remainder of the simulation 

 

The purpose of step (ii) is to circumvent direct manipulation of atomic trajectories 

within the interior of the supercell during the “production phase” of the simulation, thereby 

minimizing perturbation of the system’s time evolution.  Following equilibration, quantities 

of interest were calculated as averages over the interior of the supercell (outside of the 

thermal bath).           

 

4.3 Interplanar spacing 
 
 

Interplanar separation was automatically computed by the code as a function of 

temperature and in-plane lattice parameter.  The functional form of this relationship was 

developed by fitting to the (c/a) ratio of graphite at each temperature, as derived from a-axis 

and c-axis thermal expansion data [14].  Fig. 4-2 shows the (c/a) ratio as a function of 

temperature.  Multiplying the (c/a) ratio by the in-plane lattice parameter (a fixed quantity 

under the NVT ensemble) results in the correct interplanar spacing.               
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                                                           Fig. 4-2   The C/A ratio for Graphite 
                                                         
                                        

4.4 Center of Mass Correction 
 
 

As mentioned in section 2.7, the standard CM correction scheme functions well for an 

isotropic system yet performs inadequately for graphite.  Because the graphitic basal planes 

do not interact under the REBO potential, it is possible for each plane to glide at some net 

velocity while still preserving a total CM velocity of zero for the entire system.   

 This problem was fixed by applying the CM correction on a plane-by-plane basis, 

thereby precluding the planar glide phenomenon.  More precisely, a zero CM velocity 

condition was enforced in the thermal bath region of the supercell.                     
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4.5 Modifications to the Potential Function 
 

To address deficiencies in the performance of the potential function above 0 K, 

temperature dependency was introduced into Eq. (2.25), which was re-written as: 

( ) ( ) ( )[ ]∑∑
>

+=
i ij

ijAijijRijc TrVbTrVTzrfE ,,,,
'                                                 (4.1) 

in which adjustments have been made to the cutoff function and pairwise attractive and 

repulsive terms.  These adjustments are now described in turn.        

4.5.1   Anisotropic Cutoff 

                       
The cutoff function was augmented with an additional term as follows:       

( ) ( ) ( )TzfrfTzrf cijcijc ,, '
,

' +=                                                                         (4.2) 

Here, ( )ijc rf  is the standard cutoff function and ( )Tzfc ,'  is defined as: 
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in which z refers to the c-axis displacement of an atom from its initial position in the basal 

plane, ∆d is the interplanar spacing, and K governs the magnitude of the barrier to out-of-

plane motion generated by ( )Tzfc ,' .  The appropriate value of K is determined in Chapter 5 

by fitting c-axis MSD calculations to experimental measurements.       

The basic form of ( )Tzfc ,'  is plotted in Fig. 4-3.  For small displacements, this term 

exhibits parabolic behavior.  Midway between two planes (i.e. at z = ∆d/2), the energy 

contribution from ( )Tzfc ,'  peaks, as is expected due to symmetry.  
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                 Fig. 4-3     Profile of the c-axis cutoff function, ( )Tzfc ,' .  The period of ( )Tzfc ,'  is equal to the 
interplanar spacing, which increases monotonically with temperature.   

 
 

The Lennard-Jones model (often used to simulate Van der Waals forces) also behaves 

parabolically at small displacements about the equilibrium point.  This may be demonstrated 

analytically from the Lennard-Jones formula [16] : 
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where re and Ve are fitting constants.  Expanding Eq. (4.4) with a Taylor series: 
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And therefore: 
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at small displacements from re (the minimum energy distance) .        

4.5.2    Pairwise Coefficients 
 

The terms ( )TrV ijA ,  and ( )TrV ijR ,  in Eq. (4.1) may be expanded as: 

( ) ( ) [ ]ij
ij

ijR r
r
QTATrV α−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= exp1,                                                                  (4.8) 

( ) ( ) [ ]∑
=

−=
3,1

exp,
n

ijnnijA rTBTrV β                                                                              (4.9)                         

where the pairwise potential coefficients, A  and nB , now vary with temperature.  The purpose 

of this modification is to compensate for the sole usage of 0 K properties in fitting the 

interatomic potential function, which was shown to be inadequate for graphite even at 

intermediate temperatures. 

 Modification of the pairwise coefficients affects the weights of the repulsive and 

attractive terms, and any change in these coefficients will, in general, affect both the position 

and depth of the potential energy minimum.  Because the thermal expansion coefficient 

depends upon the position of the potential energy minimum as a function of temperature, 

correct thermal expansion behavior may be achieved by devising appropriate forms for ( )TA  

and ( )TBn .  The specific methodology used in this work to define ( )TA  and ( )TBn  will be 

discussed in Chapter 5.        
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Chapter 5 

MD Results  
 

5.1   Absolute Zero Properties 
 

The first step in verifying an interatomic potential function is to ensure that it yields 

correct values for the physical parameters of the system of interest at absolute zero 

temperature.  Two such parameters – the cohesive energy and bond length – are 

characteristic quantities that are generally well-defined in literature.  Fortunately, both are 

also obtainable from the most basic output of an MD simulation.   

The cohesive energy of a crystal is defined as the energy required to dissociate the 

crystal into a set of infinitely separated atoms at rest [16].  Because the REBO potential does 

not account for interplanar interaction, determination of the cohesive energy in graphite 

involves only the in-plane lattice parameters (the a and b parameters).  These are related by: 

ab
3

2
=                                                                                                                   (5.1) 

so that the cohesive energy is a function only of the a parameter.   

To calculate cohesive energy using the NCSU MD code, the system temperature was 

held at 0 K and potential energy was calculated at various in-plane lattice parameters ranging 

between 2.44 Å and 2.48 Å.  The supercell size was set to 1024 atoms and the total 

simulation time was fixed at 1.5 picoseconds with a 1.0 femtosecond time step.  The resulting 

curve of crystal energy vs. lattice parameter is given in Fig. 5-1.   
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                                Fig. 5-1   The energy profile as a function of lattice parameter at 0K 
                                       
 

Theoretically, the 0 K properties of graphite correspond to the minimum of the energy 

curve.  The deduced equilibrium lattice parameter is therefore 2.46 Å, and the cohesive 

energy (i.e. the potential energy at the equilibrium lattice parameter) is 7.395 eV/atom.  

These values exhibit good agreement with experiment as well as previously published results 

with the REBO potential function [12].             

 

5.2   General High Temperature Behavior 

5.2.1   Potential Energy 
 

Prior to parameterizing the REBO potential to fit temperature-dependent physical 

properties, a few relatively simple calculations were performed to verify that the code was 

functioning properly at high temperatures.  First, the average potential energy of the system 

was examined as a function of temperature between 0K and 1800K.  For a perfectly 

harmonic system, the magnitude of the potential energy is expected to decrease linearly with 

temperature as per the relation: 
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kTEEEE cohKtot 2
3

−≅−=                                                                                  (5.2) 

where Ecoh is the cohesive energy.  While the simulated system is not expected to behave in a 

purely harmonic manner, Eq. (5.2) should be a rough approximation of the calculated mean 

potential energy.  MD calculations of potential energy are compared to the harmonic 

approximation in Fig. 5-2. 

 

               Fig. 5-2  Mean potential energy vs. temperature.  Comparison is made to the harmonic 
approximation.    

   

Anharmonicity in the potential function is evident through the slight deviation from 

the harmonic approximation.  However, the average MD potential energy exhibits very 

similar behavior. 

 

5.2.2   Standard Deviation in Temperature     
 

Another simple test involves the standard deviation in temperature.  For the purposes 

of this test, the simulated graphite system was equilibrated under the NVT ensemble and the 
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temperature control mechanism was then halted abruptly, converting the system to an NVE 

(constant energy) ensemble.  Under the NVE ensemble, the average kinetic energy (and 

hence also the temperature) fluctuates with an amplitude dependent upon the magnitude of 

the temperature.  To see this, one may start with the statistical uncertainty inherent in one 

particle’s kinetic energy: 

TkBEK
=σ                                                                                                                 (5.3) 

where the total kinetic energy of the system is given by KNE=ε .  Therefore, 

( ) ( ) NTkTkNE BB
i

Ki ==∆= ∑ 22
εσ                                                              (5.4) 

and from the classical expression relating kinetic energy to temperature: 

TNkB2
3

=ε                                                                                                               (5.5) 

the standard deviation in temperature can be derived as follows: 

NTkNk BTB == σσε 2
3                                                                                        (5.6) 

N
TT

1
3
2

=σ                                                                                                            (5.7) 

 To compare this theoretical relation against MD, the standard deviation in 

temperature was directly calculated after applying a 1500 K thermal bath for 1.0 picoseconds 

followed by 2.0 picoseconds of unconstrained (NVE) equilibration.  Fig. 5-3 shows a 

comparison between Tσ  computed during the NVE phase and the standard deviation 

predicted from Boltzmann statistics [17], as derived above. The close correspondence 

apparent in Fig. 5-3 suggests appropriate MD behavior at high temperatures [18]. 
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Fig. 5-3  Comparison of the temperature fluctuations of a graphitic system as calculated from MD 
simulations (dots) and the derived theoretical model (solid curve).   
 
 
 

5.3 High Temperature Physical Properties 

5.3.1  Thermal Expansion 
 

The linear coefficient of thermal expansion is defined as: 

( ) ( )
( )

dT
Tda

Ta
T 1

=α                                                                                                    (5.8) 

where )(Ta  is the lattice parameter at temperature T.  In a purely harmonic material, the 

coefficient of thermal expansion is uniformly zero.  Thus, expansion (or contraction) arises 

from higher-order anharmonic terms in the potential energy function.   

In non-cubic materials, α(T) generally exhibits distinct behavior along each 

crystallographic axis.  This fact is particularly evident in graphite, which expands 

monotonically along the c-axis while showing a contraction effect along the a-axis at low 

temperatures, transitioning to a slow expansion above about 650 K.  The difference in the 

expansion profile between these two axes arises from the vast dissimilarity in bonding 

character.   
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As a consequence of the short-range nature of the REBO potential, the c-axis 

expansion coefficient could not be examined in this work.  However, the a-axis expansion 

coefficient is an excellent quantity against which to benchmark the NCSU MD code.           

 

Adjustment Factor 

It has already been shown that thermal expansion calculations using the published 

REBO potential do not agree well with experiment. Thus, the discussion now focuses on 

fitting the functions ( )TA  and ( )TBn  (as applied in Eqs. (4.8) and (4.9)) to the correct 

thermal expansion profile of graphite.  For the purposes of this work, ( )TA  and ( )TBn were 

written as:  

( ) ( )[ ]TTCATA o αexp=                                                                                             (5.9) 

( ) ( )[ ]TTCBTB nonn βexp,=                                                                                     (5.10) 

where oA  and onB ,  are the constant pairwise coefficients as defined in the published REBO 

potential, and C(T) is a temperature-dependent adjustment factor.  These forms for ( )TA  and 

( )TBn  were chosen because they reduce to oA  and onB ,  at T = 0, thereby maintaining 

agreement with 0 K properties such as bond length and cohesive energy.  The procedure 

employed to obtain an explicit formula for C(T) shall now be described.  

First, an estimation of the sensitivity of the potential energy minimum to C(T) is 

needed.  Due to the small magnitude of the adjustment factor – which is treated as a 

perturbation to the potential function – the terms ( )[ ]TTCαexp  and ( )[ ]TTCnβexp  are 

approximately linear within the temperature range of interest, and consequently the position 
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of the potential energy minimum is also linear with respect to C(T)T.  Therefore, an 

estimation of C(T) at any temperature may be ascertained via the formula: 

( ) ( )[ ]TaTa
a

CTC orefest −
∆

=)(                                                                                 (5.11)               

where estC  is the estimated adjustment factor, refa  and oa  are the reference and calculated 

lattice parameters respectively, and ∆a/C is the rate of change in lattice parameter with 

respect to C (generated from an arbitrary yet reasonable initial guess of C).  

It is sufficient to determine the slope, ∆a/C, at one temperature (say 300K) and then 

utilize this to estimate the value of C(T) required to match experimental data at all other 

temperatures.  Using the procedure outlined above, the normalized slope,
TTC

a
)(

∆ , was found 

to be 0.87.     

Applying Eq. (5.11) to the data in Fig. 3-3 results in the estimated C(T) values plotted 

in Fig. 5-4.   The reference lattice parameters were taken as the midpoints of the shaded 

region of Fig. 3-3.   

While the data in Fig. 5-4 appear to be roughly linear, a simple linear (or polynomial) 

fit would be inappropriate for graphite.  This is because graphite expands at a nearly constant 

rate in both the low and high temperature extremes, whereas a polynomial fit would result in 

an accelerating expansion throughout the entire range of temperatures.    
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                                                 Fig. 5-4   The predicted values of C(T) up to 1800 K. 
 
                                                                        

A sigmoidal fit was chosen because the sigmoid function asymptotically approaches 

constant values at the low and high temperature extremes, resulting in a constant thermal 

expansion (or contraction) in these limits, as is observed in graphite.  To fit the data of Fig. 5-

4, a four-parameter sigmoid function of the following form was used: 

( )
⎥⎦
⎤

⎢⎣
⎡ −−

+
+=

d
TT

bcTC
o

o

exp1
)(                                                                             (5.12) 

in which co, b, d, and To are fitting parameters.  SIGMAPLOT was employed to compute 

these parameters through nonlinear least-squares regression analysis.  The fitted values are 

tabulated in Table 5.1.  Applying the parameterization of Table 5.1 to Eq. (5.12) generates 

the C(T) function plotted in Fig. 5-5. 
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        Table 5.1:   Parameters for Sigmoidal Fit to C(T). 
                  b            =      4.769E-06  Å/K       
                  d             =      3.897E+02   K  

                  To            =      1.410E+03   K  

                  co            =     -1.681E-06  Å/K   
                                  

 
                                           Fig. 5-5   Sigmoidal Fit to the estimated values of C(T)  
                       
                           
                                    

Substituting the fitted C(T) back into Eqs. (5.9) and (5.10) yields the final formulae 

for )(TA  and ( )TBn , which are plotted in  Fig. 5-6   Lattice parameter computations were 

repeated to confirm that )(TA  and ( )TBn  generate the desired impact on thermal expansion 

behavior.  The resulting thermal expansion profile, displayed in Fig. 5-7, almost completely 

coincides with the shaded band of reference data.   
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 Fig. 5-6.   Attractive and repulsive coefficients of the modified REBO potential as a function of 

temperature, normalized to their (constant) published values.  At 0 K the normalized coefficients are 
identically unity, indicating that there is no impact to the cohesive energy or bond length at this 
temperature. 

 
 

 
     Fig. 5-7.   The effect of C(T) on thermal expansion.  MD calculations are compared to a shaded region 

representing the total range of data reported by Billings [19], Steward [20], and 
Bailey/Yates/Morgan [21].  
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The MD calculations plotted in Fig. 5-7 represent the minimum energy lattice 

parameters as determined through polynomial regression analysis.  These fits are shown in 

Fig. 5-8.  At each lattice parameter and temperature, the system was evolved until 

convergence was observed in the potential energy as a function of time.  Average values of 

the potential energy were computed over the last several thousand steps of the run.   

To illustrate the convergence of the results presented in Fig. 5-8, the standard error of 

the mean potential energy at 1822 K (the most restrictive case) is shown in Fig. 5-9 for each 

lattice parameter used in the polynomial fitting.  In all cases, the standard error was found to 

be on the order of 10-5 eV – much less than the typical difference between successive energy 

calculations.  The energies used in the polynomial fitting routine are therefore relatively well 

defined, and a fit may be applied with confidence.                          

One consequence of adding temperature dependence to the pairwise potential 

coefficients is that the minimum of the interatomic potential energy curve is slightly shifted 

at each temperature.  This effect is demonstrated in Fig. 5-10 at temperatures of 300, 900, 

and 1800 K.  As expected, the position of the minimum potential energy as a function of 

temperature follows the same trend as the lattice parameter.  The changes in potential energy 

due to C(T) are only on the order of 0.1%, indicating that C(T) is indeed acting as a small 

perturbation.    
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              Fig. 5-8:    The average potential energy as a function of lattice parameter at:  a) 300 K , b) 650 

K , c) 900 K , d) 1200 K , e) 1520 K , and f) 1822 K using the temperature-adjusted REBO 
potential.   The minima of the polynomial fits correspond to the lattice parameters at thermal 
equilibrium.        

               
 

 
                     Fig. 5-9.   Computations of the average potential energy at 1822 K, with error bars 

representing the standard error in the sample mean.  This error is on the order of 10-5 eV.       
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                         Fig. 5-10   The impact of C(T) on the interatomic potential energy curve 

 

5.3.2 Mean Squared Displacement  

  
The mean-squared displacement (MSD), calculated in MD from the equation: 

[ ]
( )( )o
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Tt

N

n
n

t
n

TTN

rr
rMSD o

−

−
=∆=
∑∑
= =1

20

2                                                                             (5.13) 

is a measure of the average distance by which a particle deviates from its initial position.  

Here, t
nr  refers to the instantaneous displacement from equilibrium of particle n at time t, N is 

the total number of particles, To is the initial time step, T is the final time step, and (T-To) is 

the total number of time steps over which MSD is calculated. 

 Solids, liquids, and gases exhibit fundamental differences in the time evolution of 

MSD.  Representative MSD curves of the three states of matter are displayed in Fig. 5-11.  In 

a gas, the weakness of the interatomic interaction allows atoms to expand almost freely, 

giving rise to a parabolically increasing MSD.  Liquid particles are in close contact and 
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significantly impede each other’s movement.  Consequently, the atoms in a liquid move 

almost in the fashion of a random walk, resulting in a linearly increasing MSD following an 

initial transient period.  Particles in a solid, on the other hand, are confined to discrete lattice 

positions under normal conditions.  The MSD therefore fluctuates about a definite mean 

value that depends upon the temperature and interatomic binding characteristics of the 

system.                             

 

                                 Fig. 5-11:    Representative MSD profiles of a solid, liquid, and gas.  [22] 
         

In addition to the total MSD (represented by Eq. (5.13)), one could also compute the 

partial MSD along any arbitrary axis by replacing the r of Eq. (5.13) with the displacement 

along the chosen axis.  In the Cartesian coordinate system, the partial and total MSD are 

related by: 

( ) ( ) ( ) ( )22222222 zyxr ∆+∆+∆=∆                                                                             (5.14) 

where, in the case of a cubic system, one would expect the three terms on the RHS to be 

equal due to symmetry.  However, in an anisotropic system, the partial MSDs generally take 

on distinct values based on the binding characteristics along each axis.  This is particularly 

true for graphite, in which large out-of-plane displacements result from the weakness of the 
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Van der Waals force acting between basal planes.  In fact, the amplitude of c-axis thermal 

vibrations is roughly an order of magnitude greater than that of in-plane vibrations.                    

 Examples of the time evolution of MSD as computed with the NCSU MD code are 

given in Fig. 5-12.  The system begins in an unperturbed state, corresponding to an MSD of 

zero along each axis.  As the carbon atoms move outward with an average kinetic energy 

proportional to the system temperature, MSD increases rapidly and generally assumes a 

maximum before leveling off about an equilibrium value.  Once steady-state fluctuation is 

apparent, a reliable average value can be extracted over several thousand time steps.                

 
        Fig. 5-12    The asymptotic convergence of the graphitic a-axis and c-axis MSD at 1200 K.    
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The out-of-plane MSD was fitted through the function ( )Tzfc ,' , defined in Eq. (4.3).  

Specifically, the coefficient K was determined so as to optimize the match between the c-axis 

MSD and the range of relevant theoretical and experimental data (given in Fig. 5-13).  

Because the pairwise attractive and repulsive terms are modulated by ( )Tzfc ,' , the product 

has units of energy and one expects that:                      

( ) ( ) ( )[ ] dijAijijRc ErVbrVTzf ∆+ ~,'                                                                           (5.15)      

where E∆d is the interlayer binding energy of graphite (measured to be in the range of of 50-

60 meV/atom [28]).  Optimizing K using Eq. (5.15) to generate an initial guess, the value of 

K was found to be 0.00533, which produces good agreement with literature MSD data 

throughout the temperature range of interest.  Substitution of the cohesive energy of graphite 

into the bracketed term of Eq. (5.15) yields E∆d ≅  40 meV at the optimized value of K.   

With the fitted function ( )Tzfc ,'  incorporated into REBO, the NCSU MD code was 

used to compute MSD (both in-plane and out-of-plane) at temperatures ranging from 0 K to 

1800 K.  In terms of Cartesian coordinates, the in-plane and out-of-plane MSD are defined 

respectively as: 

22222 yxr
in

∆+∆=∆                                                                                          (5.16) 

zr
out

22 ∆=∆                                                                                                            (5.17) 

where z is oriented along the hexagonal c-axis.  Each simulation was run for 50,000 time 

steps, with the MSD averages taken over the final 30,000 steps.  In each case, convergence 

was verified by constructing plots similar to Fig. 5-12.  The results are shown in Fig. 5-13.     

It should be noted that the computed MSD is uniformly zero at 0 K, whereas the 

reference curves included in Fig. 5-13 tend toward nonzero values at 0 K.  This inconsistency 



www.manaraa.com

     52
 

arises from the classical nature of MD.  In a real system, atomic vibrations (termed “zero 

point vibrations”) occur even at 0 K as a consequence of Heisenberg’s uncertainty principle.  

An MD system at 0 K, however, possesses no internal energy and therefore contains only 

static atoms.  The inability of MD to account for zero point vibration is one example of the 

breakdown of MD techniques in the low temperature limit.                

 
           Fig. 5-13:  TOP PANEL:  The in-plane MSD as compared with the x-ray diffraction measurements 

of Fitzer & Funk [23] and the lattice dynamical calculation of Firey [24].  BOTTOM PANEL: The 
out-of-plane MSD as compared with the theoretical upper and lower bounds proposed by Kelly 
[25].  Experimental measurements are represented by red diamonds (Kellet [26]) and blue 
triangles (Post [27]).   
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While the out-of-plane MSD exhibits very good agreement with experiment, the 

computed in-plane MSD begins to diverge from the measurements of Fitzer & Funk at about 

1100 K –  the point at which the Fitzer & Funk data suddenly curves upwards.  This change 

in slope is believed to result from the large magnitude of the in-plane Debye temperature 

(1500 K), which causes additional modes of vibration to be activated at high temperatures 

[23].  Because the out-of-plane Debye temperature is much lower (625 K), no sudden change 

of slope is evident in the c-axis MSD at intermediate to high temperatures.                          

 

5.3.3 Bond Length 
 

In addition to the insight gained from MSD concerning the vibrational characteristics 

of graphite atoms, the behavior of the interatomic bond length (corresponding to the relative 

displacement of neighboring atoms) also provides information about the dynamics of the 

system.  A representative plot of the time evolution of bond length is given in Fig. 5-14. 

As is apparent in Fig. 5-14, the minimum, maximum, and average bond length all 

approach steady mean values after roughly 10,000 steps.  Because of the steep repulsive 

barrier inherent to the REBO potential, the minimum bond length is closer to the mean value 

than is the maximum bond length.  Notably, a small number of atoms enter the cutoff range 

of the potential function (1.7 Å – 2.0 Å), but this occurs far too infrequently to impact the 

equilibrium properties of the system within the temperature range of interest.   

Whereas the minimum and maximum bond length fluctuate considerably, the average 

bond length assumes a very well defined value that varies with temperature as shown in Fig. 

5-15.                                
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Fig. 5-14.  The evolution of the minimum, maximum, and average interatomic bond length during the 
course of a 1500 K NCSU MD simulation.            
    

 
Fig. 5-15.  The increase in average interatomic distance (bond length) with temperature.  A 2nd order 
polynomial fit is superimposed on the data.   
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The monotonic increase in mean bond length arises due to anharmonicity in the 

potential energy function.  Even though the basal plane contracts at low to intermediate 

temperatures, the mean interatomic distance nevertheless exhibits continual expansion.  This 

seeming contradiction is made possible by the relative freedom of out-of-plane atomic 

motion, which factors explicitly into bond length but does not directly affect basal plane 

expansion.       
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5.3.4 Radiation Damage & Threshold Displacement Energy 
 

When an impinging high energy particle interacts with the constituent atoms of a 

material, it is possible for one (or more) atoms to gain sufficient energy to produce a defect in 

the regular lattice structure.  Typically, irradiation generates vacancy - interstitial pairs 

termed Frenkel defects, which can interact to form more complex defect networks.  If the 

environment of the defect contains adequate thermal energy, diffusion of the defect back to 

its original lattice site (i.e. recombination) may take place.  Otherwise, the defect becomes a 

permanent part of the material structure.      

In a nuclear reactor, the moderator material (e.g. graphite) will normally be 

bombarded with neutrons in the MeV range of energy.  Each collision between an incident 

neutron and a moderator atom creates a highly energetic projectile – denoted the primary 

knock-on atom (PKA) – which recoils with an energy proportional to the energy of the 

incident neutron.  Generally, the PKA energy lies within the keV range.  The energy of the 

PKA is, in turn, dissipated in collisions with other moderator atoms, possibly creating a 

number of defects before an equilibrium state is reached.  The colliding neutron may also 

undergo subsequent collisions and create multiple PKAs prior to thermalization.  

An important quantity in predicting the degree of damage to the moderator structure 

is the threshold displacement energy (Ed), defined as the minimum PKA energy sufficient to 

create a stable Frenkel pair.  Ed is significant because its inverse serves as a rough constant of 

proportionality between the amount of energy deposited in the moderator and the resulting 

number of defects produced (prior to recombination).  Since the quantity of defects exerts a 

sizable influence on physical and mechanical properties (particularly conductivity), Ed plays 

a vital role in radiation damage studies.            
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 The threshold displacement energy is readily calculable using MD techniques; this 

procedure is outlined in Fig. 5-16.  Essentially, PKAs of increasingly large energy are 

introduced sequentially into an otherwise unperturbed supercell until a Frenkel pair remains 

after the reinstatement of thermal equilibrium.  The lowest energy at which this occurs is 

recorded as Ed.       

 

                                  Fig. 5-16.   Schematic of the MD routine for determining the threshold displacement  
energy (Ed). 
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 Because of graphite’s anisotropic structure, there exists a range of non-equivalent 

PKA directions bounded by polar and azimuthal angles of: 

                    θ = [0° - 60°] 

                 Ф = [0° - 90°] 

where θ is the polar (in-plane) angle and Ф is the azimuthal angle from the c-axis. 

Furthermore, two distinct lattice sites exist – those with honeycomb gaps directly above and 

below (AB type), and those with carbon atoms above and below (AA type).  A schematic of 

the format used in defining features of the PKA is given in Fig. 5-17.  To comprehensively 

investigate Ed, sufficient permutations of the polar and azimuthal angles (using both AA and 

AB type PKAs) must be examined.            

 

          Fig. 5-17.   The notation used in defining the PKA type and orientation.  Θ refers to the polar angle 
while Ф denotes the azimuthal angle from the c-axis.  AA type atoms are situation directly above 
and below other carbon atoms, whereas AB types lie between two honeycomb gaps (represented by 
the “x” symbol).  Θ and Ф span non-equivalent ranges of [0° - 60°] and [0° - 90°] respectively.                
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The investigated angular permutations are elaborated in Table 5.2, from which it is 

apparent that a total of 28 Ed calculations were performed at each temperature (14 

permutations x 2 non-equivalent atoms).  The results of these calculations are presented in 

Fig. 5-18.                               

                                        Table 5.2:   The PKA directions along which Ed was computed 
  

Ф(°) θ(°) Note 
0 0 purely out-of-plane
30 0,20,40,60  
60 0,20,40,60  
90 0,15,30,45,60 purely in-plane 

  

 

 

Fig. 5-18.  The threshold displacement energy of graphite at:  a) 300 K,  b) 700 K,  c) 1200 K,  and d) 1800 
K. The shaded area represents the total calculated range of Ed with respect to polar angle and atom type.  
Θ-averaged Ed is plotted as solid diamonds.   MD results are compared to the electron irradiation studies 
of Montet [29] and Iwata [30], both conducted at approximately room temperature (298 K).    
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 As expected, the θ-averaged threshold displacement energy attains a maximum value 

at Ф = 90° – the angle corresponding to a purely in-plane PKA.  This result arises from the 

fact that in-plane PKAs collide with other carbon atoms in the same honeycomb cluster as 

the PKA, thereby causing the PKA to slow down in the vicinity of its associated vacancy.  In 

this situation, recombination is likely to occur.   

 PKAs with an out-of-plane component (i.e. with 0° ≤  Ф < 90°) do not necessarily 

collide with a carbon atom of the same plane.  Especially below Ф = 60°, the PKA tends to 

traverse the interplanar gap, resulting in a collision with the atoms of a neighboring plane.  

Because little resistance to atomic motion exists within the interplanar gap, PKAs entering 

the gap are capable of traveling a long distance relative to the interatomic spacing of the 

system.  Therefore, such PKAs generally reach an equilibrium position far from their original 

lattice sites, making recombination an unlikely scenario.                                 

 The calculated, θ-averaged Ed values of Fig. 5-18 (labeled as “NCSU arithmetic 

mean”) accord fairly well with the measurements of Montet and Iwata and usually fall 

between their respective curves.  At 300 K and 700 K, however, the computed Ed at Ф=0° 

lies significantly above the corresponding data reported by Iwata and Montet.  This 

phenomenon is believed to arise from the fact that a PKA oriented along Ф=0° enters into the 

cutoff range of neighboring atoms (both above and below) after moving a distance of only 1 

Å.  The PKA then experiences a force which, due to symmetry, points directly back towards 

its initial position.  Contrastingly, intermediate knock-on angles cause the PKA to enter an 

undamaged region where the symmetry of its surroundings locks it approximately halfway 

between neighboring planes.  Hence, recombination is more probable at Ф = 0°, resulting a 

larger apparent Ed.                             
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Chapter 6 

Conclusions and Future Work 
 

6.1   Conclusions 
 
 
 Molecular dynamics techniques have been implemented to study the physical 

properties of graphite at temperatures spanning 0 K – 1800 K.  These studies entailed the 

development of a graphite-specific MD code based on the 2nd generation REBO potential for 

hydrocarbons, with modifications introduced as needed to fit high temperature experimental 

data such as mean squared displacement and thermal expansion.  The adjustments to the 

REBO potential include a plane-by-plane center of mass velocity correction, a supplementary 

cutoff term representing long-range forces, and temperature-dependent adjustments to the 

pairwise attractive and repulsive coefficients.  Each adjustment to the potential function was 

parameterized to fit a specific physical property throughout the investigated range of 

temperatures.     

 The NCSU MD code, containing the modified REBO potential, was shown to 

accurately compute thermal expansion and out-of-plane MSD up to 1800 K.  Furthermore, 

the high temperature behavior of other properties such as average potential energy and mean 

interatomic distance was demonstrated to be physically sound.  As a theoretical test case, the 

standard deviation in temperature was calculated in the microcanonical ensemble and 

compared to its corresponding statistical mechanical prediction.  The MD results exhibited 

very good agreement with the theoretical model.   

 The NCSU MD code was subsequently utilized to calculate the threshold 

displacement energy of graphite from room temperature to 1800 K.  The full range of non-
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equivalent knock-on angles and lattice sites was considered, and a total of 28 individual Ed 

measurements were performed at each temperature.  It was discovered that the computed Ed 

generally increases as the in-plane component of the simulated knock-on event becomes 

dominant.  This observation was explained on the basis of the layered structure of graphite.  

Furthermore, threshold displacement calculations (averaged over the polar angle) were found 

to accord well with the conclusions of two electron irradiation studies reported in literature.              

               

6.2 Future Work 

6.2.1  Cascade Collisions    

 
The threshold displacement study performed in this work could be augmented by 

examining the keV-range PKAs that would be expected to arise in a graphite moderator.  At 

these energies, the PKA would be capable of dislodging many other carbon atoms through 

collision cascades, and the formation of defect clusters would therefore become feasible.  

The damaged structure that results from such simulations could then be used to infer the 

properties of an irradiated graphite moderator.                           

 However, a few changes to the MD code would be necessary in order to 

accommodate high energy PKAs.  For example, larger supercells would likely be required as 

the damaged region increases in extent.  Also, if the layered structured of graphite is 

subjected to significant local deformation (as would be expected from a high energy PKA), 

the out-of-plane cutoff function may no longer act as a good approximation to the true long 

range forces.  In this situation, an explicit calculation of long range forces may be needed, at 

least in the vicinity of a deformation.  
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6.2.2  Nuclear Grade Graphite 

          
 The next phase of this work is to devise and implement a methodology for modeling 

nuclear-grade graphite, which is a two-phase mixture of pyrolytic carbon and amorphous 

binder carbon.  Unlike pure pyrolytic graphite, nuclear-grade graphite also contains a pore 

structure that lowers its average density.  Due to the lack of microscopic uniformity in 

nuclear graphite, modeling efforts will need to be expanded to account for the coexistence of 

multiple microstructures.   

 Because nuclear graphite is the preferred form of graphite for application in power 

reactors, its thermal neutron scattering cross sections are of particular interest.  The 

procedure outlined in section 1.3 could be utilized to compute the scattering cross section 

from atomic trajectory data.  The effects of irradiation could also be examined by first 

evolving a damaged graphite structure from high energy cascade collisions, as described in 

the previous section.  Results derived from these simulations would be highly useful in 

predicting how the accumulation of radiation damage affects the thermal flux spectrum of the 

reactor core.          
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Appendix A 

Statistical Ensemble Theory 
 

Introduction 
 
 

The purpose of this appendix is to provide the interested reader with a more detailed 

description of the aspects of statistical mechanics that are relevant to computational MD.    

The concept of particle ensembles arises frequently in statistical mechanics and 

constitutes the theoretical basis for the behavior of any molecular dynamics system.  In 

general, the term “ensemble” refers to the (possibly infinite) microscopic configurations of a 

system commensurate with a given set of macroscopic constraints on such quantities as 

temperature, volume, particle number, chemical potential, or total energy.   

The majority of MD simulations are performed using an NVE (constant number-

volume-energy), NVT (constant number-volume-temperature), or NPT (constant number-

pressure-temperature) ensemble.  While all real systems, in principle, obey the constraint of 

constant total energy, ensembles other than NVE are often desirable depending on the 

purpose of the simulation.  For example, experiments are normally performed under 

conditions of constant temperature and pressure – readily measurable macroscopic quantities 

that may be controlled and reproduced with ease.  In contrast, the total energy or number of 

particles cannot be directly measured.   

Thus, it would appear that the preferred ensemble (in terms of replicating laboratory 

conditions) would fix easily measurable thermodynamic quantities.  Fundamental to 

statistical mechanical theory, however, is the principle that all ensembles must equivalently 
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predict the observables of the system in the thermodynamic limit (i.e. as the number of 

particles approaches Avogadro’s number).                 

              

General Concepts 
     

 In this section, the relevant concepts and nomenclature of statistical mechanics are 

introduced.  The material presented here is foundational to the discussion of ensemble theory 

that follows.  Throughout the remainder of this discussion, the postulate of equal a-priori 

probabilities will be assumed, which states that [31]: 

                 When a macroscopic system is in thermodynamic equilibrium, it is equally likely to 

be in any state satisfying the macroscopic conditions of the system. 

In practice, this key postulate is virtually required to derive any useful result from statistical 

mechanics.  The numerous successes of statistical mechanical theory serve as justification for 

the postulate of equal a-priori probabilities.      

      

Phase Space and Entropy 
 
 Phase space is the space that encompasses all possible states of the system, with each 

point in phase space corresponding to a unique state.  For every degree of freedom, there 

exists a corresponding axis in phase space.  Therefore, in a classical system of N particles 

with 3N coordinate components (q1, q2, …, q3N) and 3N momentum components (p1, p2 , …, 

p3N), there will be a total of 6N mutually orthogonal axes.   
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The probability density of finding the system in a state ( )pq vv,  about NN dpdq 33  is 

designated by ( )pq vv,ρ .  So, 

( ) pqddpq NN 33, vvρ    =    number of representative points contained in NN dpdq 33   

The volume occupied by a system in phase space is:               

( ) ∫=Γ pqddVNE NN 33,,                                                                                         (A.1) 

where the integral extends over all allowed values of q and p.  The microscopic definition of 

entropy follows from the above equation and may be written as: 

( ) ( )VNEkVNES B ,,ln,, Γ=                                                                                   (A.2) 

where kB is Boltzmann’s constant.               

 

Thermodynamic Potentials 
 
 

Three thermodynamic potential functions are commonly used to characterize the state 

of the system.  These are the enthalpy: 

PVUH +=                                                                                                            (A.3) 

The Helmholtz free energy: 
   

TSUA −=                                                                                                               (A.4)   
 
And the Gibbs free energy: 
 

TSPVUG −+=                                                                                                     (A.5) 
 

where U refers to internal energy.  The latter two functions are significant because they 

establish the equilibrium state of a system that is not totally isolated from its environment.  

Specifically, if a system is mechanically isolated and at constant temperature, its Helmholtz 
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free energy never decreases.  Therefore, the equilibrium state of the system corresponds to 

the state of minimum Helmholtz free energy.  Similarly, the Gibbs free energy of a system at 

constant temperature and pressure cannot decrease, implying that the equilibrium state is the 

state of minimum Gibbs free energy [31].            

          

Observables 
 

The probability density function, ( )pq vv,ρ , provides the necessary connection between 

the microscopic attributes and macroscopic observables of the system.  Expressly, 

equilibrium averages can be computed as weighted phase space integrals of the form: 

( ) ( )
( )∫

∫=
pdqdpq

pdqdpqpq
NN

NN

33

33

,

,,
vv

vrvr

ρ

ρϑ
ϑ                                                                      (A.6) 

where ϑ  is some quantity of interest.  This expression should be interpreted as an average 

over all possible microscopic configurations of the system, weighted by the relative 

probability of each configuration.  The denominator of Eq. (A.6) is often referred to as the 

partition function: 

( )∫= pdqdpqZ NN 33, vvρ                                                                                           (A.7) 

which may be evaluated once ( )pq vv,ρ  is specified.  Most thermodynamic quantities may be 

directly computed from the partition function; therefore, the primary task is to determine  

( )pq vv,ρ  for the system of interest.   
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Ergodic Hypothesis 
 

Under experimental conditions, system observables are usually measured as time 

averages rather than ensemble averages.  Because these two averaging techniques are distinct, 

their equivalence is not immediately obvious.  The validity of Eq. (A.6) lies in the so-called 

Ergodic hypothesis, which states that the ensemble average over an equilibrated system is 

identical to the time average assuming that the sampling time is sufficiently long.  In other 

words, given enough time, the state of the system will pass arbitrarily close to every 

representative point in its phase space.         

 

Ensembles 
 

The ensembles most commonly utilized in MD will now be described.  Subsequently, 

their connectedness in the thermodynamics limit will be demonstrated.     

 

Microcanonical (NVE) Ensemble        
 

 The microcanonical ensemble corresponds to a system with constant volume, particle 

number, and total energy.  More exactly, the energy is constrained to lie between E and E + ∆, 

where ∆ << E.  The occupied volume of phase space is then: 

∫
∆+<<

=Γ
EpqHE

NN pdqdE
),(

33)(
vv

                                                                                       (A.8) 

which is represented geometrically as a spherical shell of inner radius mE2  and outer 

radius ( )∆+Em2 .  The density of states, defined as the number of states per unit energy 

about E, is given by: 
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( ) ( )
∆

Γ
=

EEw                                                                                                            (A.9) 

Using Eq. (A.2) for the entropy, the temperature and pressure may be calculated from the 

following relations: 

VS
ET ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=                                                                                                             (A.10) 

SV
EP ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=                                                                                                          (A.11) 

from which the equilibrium properties of the system are derivable.   

The microcanonical ensemble is the simplest to implement in an MD program.  In a 

typical microcanonical simulation, periodic boundary conditions maintain a constant volume, 

while the number of particles scales with the supercell size (an input parameter) and 

conservation of energy is assured by the smoothness and time invariance of the potential 

function (neglecting possible error from the numerical integration scheme). 

 

Canonical (NVT) Ensemble                                  
  

The canonical ensemble corresponds to a system with constant volume, particle 

number, and temperature.  System temperature is maintained through contact with a thermal 

bath.  Under these conditions, it can be shown that: 

( ) ( )
⎥⎦
⎤

⎢⎣
⎡−∝

kT
pqHpq
vv

vv ,exp,ρ                                                                                     (A.12) 

and the partition function takes the form:            

( ) ( )[ ] ( )[ ]TVApqH
hN

pdqd
TVZ N

NN

,exp,exp
!

, 3

33

ββ −=−= ∫
vv                                 (A.13) 
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where ( )TkB/1=β  and h is Plank’s constant.  Integration is performed over the totality of 

phase space.  For the canonical ensemble, Helmholtz free energy is the thermodynamic 

function of choice because it is minimized in a constant temperature system.  In terms of the 

partition function, the Helmholtz free energy may be written as: 

( ) ZTkTVNA B log,, −=                                                                                        (A.14) 

from which the pressure, entropy, and internal energy can be computed as: 

TNV
AP

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=                                                                                                        (A.15) 

VNT
AS

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=                                                                                                        (A.16) 

TSAZU
VN

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
,

ln
β

                                                                                  (A.17) 

 In an MD program, the particle velocities must be manipulated in some manner to 

maintain constant temperature.  A few of the more widely used schemes are described below. 

 

• Velocity rescaling  –  All particle velocities are scaled by a common factor to attain 

the desired temperature (see section 2.8).  While simple, this method continually 

perturbs the system.   

• Thermal bath – Velocities are rescaled only in some user-defined “bath” region of 

the supercell.  This is the approach taken in the present work and has the advantage of 

leaving most atoms unperturbed.                     

• Nose-Hoover Thermostat –  An extra degree of freedom is introduced into the 

Hamiltonian, thereby altering the equations of motion.  The added degree of freedom 

is designed to generate the probability density given in Eq. (A.12).   
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 Isobaric Isothermal (NPT) Ensemble  
 
 

The isobaric isothermal ensemble corresponds to a system with constant volume, 

particle number, and pressure.  In the thermodynamic limit, it can be shown that the partition 

function for this ensemble is [32]: 

( )[ ] dV
kT
PVTVNA

kT
PZ ⎥⎦

⎤
⎢⎣
⎡−⋅−= ∫ exp,,exp β                                                         (A.18) 

Analogously to the canonical ensemble, the characteristic state function is the Gibbs free 

energy which may be expressed as: 

ZkTG ln−=                                                                                                          (A.19) 

which links to other state functions through Eq. (A.5).   

 Implementing the NPT ensemble in MD necessitates computation of the system 

pressure from atomistic-level data.  The pertinent relation is called the virial equation and is 

given by [33]: 

∑
=

⋅+=
N

i
ii Fr

D
NkTPV

1

1 vv                                                                                    (A.20) 

where ir
v  is the position vector of atom i, iF

v
 is the force acting on atom i due to interatomic 

interaction, and D is the dimensionality of the system (usually 2 or 3).  Two schemes for 

controlling the pressure are mentioned below.   

• Berensden method  –  The supercell is coupled to a “pressure bath” which maintains 

the correct time-averaged pressure through scaling of the system volume  

• Melchionna method –  A Nose-Hoover type barostat is integrated directly into the 

equations of motion.  The barostat is designed to generate the correct ensemble-

averaged pressure.       
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Ensemble Fluctuations 
 

 Each ensemble allows certain properties to fluctuate while others are held invariant.  

The canonical ensemble, for instance, places no constraint on particle energy as long as the 

temperature is constant, and the microcanonical ensemble places no restriction on 

temperature as long as the total energy is fixed.  Among those properties that are permitted to 

vary, the degree of fluctuation will now be examined in more detail.  It will be shown that, in 

the thermodynamic limit, deviations from the most probable value are so small that the 

various ensembles are practically equivalent.   

 As an example, the standard deviation of energy in the canonical ensemble will be 

calculated.  From Eq (A.17): 

      ZHE ln
β∂
∂

−==                                                                                                    (A.21) 

            
2

2 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ZH
β

                                                                                                (A.22) 

and the mean of the squared Hamiltonian is [34]: 

       
( ) ( )[ ]

Z

pqHpqdqdpH
H ∫ −

=
,exp,2

2
β

                                                                   (A.23)  

        
( )[ ]

Z

pqHdqdp∫ −
∂
∂

=
,exp2

2

β
β                                                                         

                 Z
Z 2

21
β∂
∂

=       

                 
2

2

2 1ln ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

=
ββ
Z

Z
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2

2

2
2 lnln ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

= ZZH
ββ

                                                                         (A.24) 

Therefore, the standard deviation in energy is: 

           ZHHE ln2

2
22

β
σ

∂
∂

=−=                                                                         (A.25) 

But from Eqs. (A.13) and (A.17),  

           v
V

CkT
T
EkTZ 22

2

2

ln =⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂
β

                                                                            (A.26) 

where Cv is the heat capacity at constant volume.  The standard deviation in energy can now 

be expressed as: 

           vE CkT 2=σ                                                                                                         (A.27) 

and the fractional deviation is given by: 

           
E

CkT
E

vE
2

=
σ

                                                                                                       (A.28) 

Noting that NCv ∝  , NE ∝ , and T = constant, the following relation becomes evident: 

           
NN

NkT
E

E 12

∝∝
σ

                                                                                           (A.29) 

which indicates that energy fluctuations in the canonical ensemble are normally distributed 

about the mean energy, E .  In the thermodynamic limit ( 2310→N ), the peak at E  is 

extremely sharp, and for all practical purposes the energy is constant at E .  Consequently, 

0→Eσ as ∞→N  and the canonical ensemble becomes equivalent to the microcanonical 

ensemble.   
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 The analogous example of temperature deviation in the microcanonical ensemble was 

detailed in section 5.2.2.  In that case, it was similarly demonstrated that temperature 

fluctuations assume a normal distribution about the mean.  This type of distribution, in fact, 

is a general result for ensemble state variables and serves to link the various ensembles at the 

macroscopic level. 

 Significantly, the number of particles in a typical MD simulation falls short of the 

thermodynamic limit by many orders of magnitude, leading to observable (though generally 

small) deviations in the state variables.  Because of this difference in scale, the choice of 

ensemble exerts a noticeable impact on MD results.                             
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Appendix B  

Parallelization 
 

Cell Structure 
 
 To facilitate the investigation of large systems (on the order of 104 to 106 atoms), the 

NCSU MD code was endowed with parallel processing capability.  The parallelization is 

implemented by dividing the supercell into a mesh of LxMxN nodes, where 

 ))()((# NMLprocessors =             

The volume assigned to each node is uniform, though the spacing of the mesh along the x,y, 

and z axes need not be of equal width.  Each node is further divided into a grid of “link cells”, 

the dimensions of which are specified by the user.  An example of a parallelized 2D supercell 

is given in Fig. B-1. 

 

 

                                 Fig. B-1.  Schematic of a two dimensional parallelized supercell 
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Heavy black lines mark the borders of the nodes (labeled 1,2,3, and 4) while thin 

black lines delimit the individual link cells.  The four cells at the center of each node are the 

core cells, and the shaded cells along the periphery are the skin cells.        

 The purpose of the link cell structure is to increase the efficiency of interatomic force 

calculations.  To illustrate this point, node 1 of Fig. B-1 shall now be examined in detail.  

During the force calculation phase of the MD code, each of the 16 link cells contained within 

node 1 is evaluated sequentially.  For each atom in the evaluated cell, the range of possible 

interaction is bounded by a square of 3x3 cells centered on the evaluated cell (i.e. the atoms 

of all neighboring cells plus the evaluated cell are considered as candidates for interaction).  

The distance is then computed between each atom in the evaluated cell and all other 

candidate atoms.  If any interatomic distance is found to be less than the potential energy 

cutoff distance, an interaction is scored and force calculations are performed.  Under this 

scheme, the efficiency of the program is maximized by minimizing the link cell volume (and 

hence, the number of candidate atoms), subject to the constraint that the volume must be 

sufficiently large to account for all interacting pairs.       

 For all core cells, the range of possible interaction falls solely within the volume 

assigned to the mother node.  Skin cells, on the other hand, are partially bordered by the cells 

of other nodes.  For example, among the neighbors n1 – n9 of the cell marked by the red “x” 

in Fig. B-1, cells n3, n4, and n5 are assigned to node 3.  In this situation, some degree of 

internodal communication is required to identify all candidates for interaction.  The program 

handles this by storing the atomic positions of cells n3, n4, and n5 within the database of node 

1.  To generalize, each node stores the updated atomic positions of all skin cells that are in 
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contact with its boundary.  Should any atom depart from the volume of its node of residence, 

it is sent to the appropriate neighbor node.       

Parallel Efficiency 
                                                 

 In contrast with, e.g., the Monte Carlo method, molecular dynamics simulations must 

proceed in a deterministic manner such that different time steps cannot be run in parallel (as 

would otherwise be the most efficient scenario).  Consequently, the aforementioned 

geometry splitting scheme is the most viable parallelization technique in spite of efficiency 

losses arising from internodal communication.  Tasks requiring such communication include: 

• Maintaining updated lists of atomic data in the skin cells 

• Transferring atoms that cross an internodal boundary 

• Calculating global quantities of interest (such as the average potential energy, the 

temperature, the center of mass velocity, and the mean squared displacement).    

 

Assuming that the number of atoms assigned to each node is sufficiently large (on the 

order of 104) and the range of interaction is relatively short, the computational cost of 

internodal communication will be much less than the cost of evaluating interatomic forces, 

and the time required for completion of the simulation will exhibit nearly linear behavior 

with respect to the number of processors.  Thus, in terms of both efficiency and memory 

storage, parallelization in MD is particularly well suited for simulations involving a very 

large system subject to short-ranged forces.        

 

 


